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Abstract

A grid-averaged Lagrangian (GAL) model for dispersed particle motion in multiphase turbulent ¯ow
is presented to provide a large eddy simulation (LES) model for multiphase turbulent ¯ow in which a
quite large number of particles are involved. The GAL model is based on an averaging operation for a
Lagrangian-type equation of motion of a particle over a computational grid volume and a procedure of
reallocation of a dispersed particle cloud with its centroid movement to each grid. The model is
therefore a mixed Eulerian±Lagrangian model which can e�ectively reduce computational time
compared with existing Lagrangian-type models, without losing the advantage of Lagrangian-type
models that they can properly describe the dynamical evolution of particles. Since the GAL model
adopts the grid-volume averaging operation it can easily provide an e�ective SGS model for LES
modeling of multiphase turbulent ¯ow. The validity of the multiphase LES model developed, which is
named the GAL-LES model, is con®rmed through its application to a particle plume, in which the
present model is found to simulate large-eddy motion usually observed in a jet and plume, and to give
good agreements with experimental data. # 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Large eddy simulation; Multiphase turbulent ¯ow; GAL model; Numerical simulation; Particle plume;
Mixed Eulerian±Lagrangian model

1. Introduction

Multiphase turbulent ¯ow is observed in many situations of interest in civil, chemical and
mechanical engineering and others. In particular, multiphase ¯ows encountered in civil
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engineering, such as sediment transport in rivers and coasts, debris ¯ow and pyroclastic ¯ow,
are characterized as large-scale motions with a quite large number of particles. Although many
experiments on such ¯ows have been conducted, the di�culty in measuring the velocity ®eld of
each phase and the particle concentration prevents us from understanding the physical
processes therein. On the other hand, the recent progress in computer performance has
increased the potential for numerically simulating these ¯ows.
Existing turbulence models for multiphase ¯ow are based on mostly time-averaged

formulations, similar to the two-equation models for single-phase turbulent ¯ow (e.g.
Elghobashi and Abou-Arab, 1983; Chen and Wood, 1985). These multiphase turbulence
models contain many parameters to be tuned for each speci®c multiphase ¯ow. Furthermore it
is not easy to apply them to multiphase ¯ow with strong non-uniformity both in time and
space, such as plug ¯ow. Although numerical simulation of multiphase turbulent ¯ow is
performed also with DNS: direct numerical simulation (e.g. Squires and Eaton, 1990), it is
di�cult to apply DNS to multiphase ¯ows under high Reynolds number condition owing to its
heavy computational load.
For further progress in multiphase ¯ow study, it is desirable to develop a LES (large eddy

simulation)-type turbulence model, which contains a smaller number of model parameters and
may simulate considerably non-uniform or eddying multiphase ¯ow. There have been some
attempts at LES computation of a dilute suspension using the Smagorinsky model for SGS
(sub-grid scale) turbulence (e.g. Ebert and Dehning, 1992). However for multiphase ¯ow with a
quite large number of particles no e�ective SGS model has been developed, mainly because of
the lack of a reasonable formulation of the dispersed-particle motion. Therefore the crucial
point for the development of multiphase LES model is to provide a new formulation of the
dispersed-particle motion under more general conditions.
A classi®cation of the previous models for dispersed-particle motion is represented in Fig. 1,

where the Lagrangian- and Eulerian-type models are separately categorized. The former is
further classi®ed into the hard-particle model, DEM (discrete element method) and DSMC
(direct simulation Monte Carlo) method according to the di�erence in the treatment of
interactions between particles. The hard-particle model is based on a direct treatment of
instantaneous contacts between particles and hence can accurately predict the motion of solid

Fig. 1. Classi®cation of the previous models for dispersed-particle motion.
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particles (Campbell and Brennen, 1985). However, this model has to bear the heaviest
computational load among the models shown in Fig. 1, because a very short time step is
required for accurate calculation of the collisions between particles. Therefore this model is not
suitable for practical applications, in which computation for a quite large number of particles
is needed. The DEM introduced by Cundall (1971), on the other hand, treats one or several
particles as an element and traces each element in time, considering the interaction between
elements based on a simple model with springs and dash-pots. The DEM has been applied to
various ¯ows including large-scale multiphase ¯ow such as debris ¯ow (e.g. Uchida and
Hakuno, 1990), because the CPU time can be e�ectively reduced. However the computational
results are of doubtful accuracy because it is di�cult to determine accurately the sti�ness and
damping coe�cients in the spring and dash-pot models. The DSMC method, which was
developed by Bird (1976) for solving the equations of rare®ed gas dynamics, has been applied
to gas±solid phase ¯ow by Kitron et al. (1990) and Tanaka et al. (1991). The model is
conceptually stochastic and therefore computationally very e�cient and can be applied to
multiphase ¯ow with a large number of particles. However, since this method adopts an
operator-splitting technique, by which particle motion is divided into free movement and
collisions, it cannot in principle be applied to multiphase ¯ow with dense particle layers, where
continuous contacts between particles exist.
The Eulerian-type models, which treat the dispersed-particle phase as a continuous medium,

are classi®ed into one-¯uid model and two-¯uid model (e.g. Marble, 1970). Generally they need
shorter CPU times and less memory size than the Lagrangian-type models. Although this is a
big advantage for calculating large-scale multiphase ¯ows, it is di�cult for the Eulerian-type
models to theoretically derive constitutive laws for the dispersed-particle motion in a manner
re¯ecting the physical processes concerned. Therefore various empirical equations are to be
used for the constitutive laws.
From these considerations it is expected that, as one of the possible and promising ways to

yield a reasonable formulation of dispersed-particle motion with a proper physical background
as well as computational e�ciency, one may employ a mixed Eulerian±Lagrangian approach.
On this line, in the present study, a new model for dispersed particle motion in multiphase
turbulent ¯ow is presented to provide an LES model for multiphase turbulent ¯ow in which a
large number of particles are involved. The model for dispersive particle motion, which is
referred to here as the GAL (grid-averaged Lagrangian) model, is based on an averaging
operation for a Lagrangian-type equation of motion of a particle over a computational grid
volume and a procedure of reallocation of a dispersed particle cloud with its centroid
movement to each grid. The model is therefore a mixed Eulerian±Lagrangian model which can
e�ectively reduce computational time compared with existing Lagrangian-type models, without
losing the advantage of Lagrangian models that they can properly describe the dynamical
evolution of particles. Since the GAL model adopts the grid-volume averaging operation it can
easily provide an e�ective SGS model for LES modeling of multiphase turbulent ¯ow. The
validity of the multiphase LES model developed, which is named the GAL-LES model, is
con®rmed through its application to a particle plume, in which the present model is found to
simulate large-eddy motion usually observed in a jet and plume, and give good agreements
with the experimental data by Tamai and Muraoka (1996). (The preliminary GAL-LES model
is outlined in Nadaoka et al., 1995.)
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2. GAL-LES model

2.1. Outline of the GAL model for particle motion

As schematically shown in Fig. 2a, a cloud of particles located in a grid volume at time t
may be advected with its deformation and di�usion during a time interval Dt under the
combined action of the various forces acting on the particles. A complete description of the
cloud evolution needs to trace the motion of all the particles in the cloud. Computationally,
however, this is a formidable task when the total number of particles becomes very large.
To reduce the computational time, in the GAL model, the cloud motion is represented by

the two components, i.e. the movement of the centroid of the particle cloud, and the particle
variances around it in each coordinate direction as shown in Fig. 2b. These two components
can be evaluated, as shown later, with the Lagrangian-type equations for the particle
movements averaged over all the particles located in a grid volume at time t. Since the
expansion of the particle cloud so simpli®ed may be easily calculated from the equation for the
particle velocity variance, the particle concentration of the cloud at t+Dt is also readily

Fig. 2. Schematic illustration of the evolution of a particle cloud in a grid volume during a time interval Dt and its
simpli®cation in the GAL model. (a) Actual cloud movement. (b) Simpli®cation in the GAL model.
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evaluated, and its value, with the contributions from all other clouds, can be reallocated to
each grid volume in a geometrical manner. These values in each grid volume, together with
other variables like velocities, may be used to calculate the grid-averaged and ¯uctuating
particle movements at the next time step. The grid-averaged values will also be used for the
Eulerian LES computation of the ¯uid-phase motion. Therefore the complete procedure is a
mixed Eulerian±Lagrangian approach, and is summarized as follows:

1. The stochastic di�erential equations of the grid-averaged particle velocity and velocity
variance, which will be described below, are integrated from t to t+Dt for the particle cloud
located in each grid volume at time t.

2. With the evolved grid-averaged particle velocity and velocity variance the centroid
movement and cloud expansion of each particle cloud during Dt are calculated.

3. Contributions of the grid-averaged particle velocity and variance and the particle
concentration from all the particle clouds at t+Dt are collected and reallocated to each grid.

2.2. Equations for particle motion in the GAL model

In the GAL model particle motion is represented with its grid-averaged particle velocity and
variance. These quantities, as derived below, are obtained by averaging the Lagrangian-type
equation of the particle movement over all the particles in each grid volume.
Denoting the particle velocity component in the xi direction (i = 1, 2, 3) usi, the equation of

motion of a particle with diameter d and density rs is given as

rs

pd 3

6

dusi

dt
� FDi � FLi � FMi � FPi � FGi � FCi �1�

where the forces on the right-hand side are respectively the drag, lift, inertia force of virtual
mass, ¯uid pressure gradient, buoyancy and the forces between particles. The Basset history
term is neglected. These forces are evaluated as follows. The drag force is given by

FDi � CD

r
2

pd 2

4
uri j urj j �2�

where r denotes the ¯uid density and uri (=uiÿusi) represents the relative velocity between the
¯uid and the particle, ui being the ¯uid velocity. The drag coe�cient CD is chosen to allow for
a wide range variation in particle concentration c (Bouillard et al., 1989):

CD � 24

Red

�1� 0:15Red�0:687�1ÿ c�ÿ2:7 �3�

where Red(=vurivd/n ) is the particle Reynolds number and n is the kinematic ¯uid viscosity.
The lift force is expressed as a function of the vorticity of the ¯uid phase oi:

FLi � CLr
pd 3

6
eijkurjok �4�
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which is in line with Auton et al. (1988). In Eq. (4), the lift coe�cient CL is taken as a constant
of 0.03.
The forces due to ¯uid pressure gradient and virtual inertia are formulated by following

Auton et al. (1988),

FPi � r
pd 3

6

Dui
Dt

�5�

FMi � rCm

pd 3

6

�
Dui
Dt
ÿ dusi

dt

�
�6�

where Cm is the virtual mass coe�cient (=0.50) and D/Dt denotes the substantial
di�erentiation. The buoyancy force is given as follows:

FGi � ÿ�rs ÿ r�pd
3

6
gdi2 �7�

where g is the gravitational acceleration in the ÿx2 direction.
The inter-particle force, FC, which is a dominant factor in multiphase ¯ow with high particle

concentration, is neglected in the present description of the model. The GAL model may
rationally evaluate this force by considering the physical aspects of particle collisions and
contacts from the Lagrangian-type equation for the particle motion. However the modeling of
the inter-particle force is a challenging but di�cult research theme of multiphase ¯ow. Since
the principal purpose of the present study is to provide a basic framework for the multiphase
LES, the inter-particle force is neglected for the present. (Its preliminary modeling was
presented by Nihei et al., 1997).
The particle and ¯uid velocities and the particle concentration are separated into grid-

averaged and ¯uctuating components, denoted by an overbar and a prime, respectively:

usi � usi � u 0si

ui � ui � u 0i

c � �c� c 0 �8�

The equations of the grid-averaged particle velocity are derived by substituting Eq. (8) into
Eqs. (1)±(7) and averaging over each grid volume. Assuming that the grid-averaged component
of the particle concentration is much greater than the ¯uctuating component, we can describe
the equations of the grid-averaged particle velocity as
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dusi

dt
� r

rs � rCm

"
18n
d 2
�1� 0:15R�ed�0:687�1ÿ �c�ÿ2:7uri � CLeijkurjok � �1� Cm�Dui

Dt

ÿ
�
rs

r
ÿ 1

�
gdi2

# �9�

where the grid-averaged value is used for the relative velocity between the ¯uid and the particle
in R �ed and Dui/Dt=@ui/@t+uj@ui/@xj.
The equation of the particle-velocity variance is derived from the equations of the ¯uctuating

component of the particle motion obtained by Tchen (1947)'s assumptions, with a formulation
of spectral response of a particle to the agitation by SGS turbulence according to Hinze (1975).
The equations are given by subtracting Eq. (9) from Eq. (1) and neglecting higher order
nonlinear terms,

du 0si
dt
� r

rs � rCm

�
18n
d 2
�1� 0:15R�ed�0:687�1ÿ �c�ÿ2:7u 0ri � �1� Cm�@u

0
i

@t

�
�10�

where the ®rst term in the right-hand side corresponds to the ¯uctuating component of the
drag, and the second term to the inertia force of virtual mass and ¯uid pressure gradient. In
Eq. (10), the ¯uctuating lift force is neglected because of the lack of its reasonable formulation.
Eq. (10) may be re-arranged into the following form:

A1u
0
si �

du 0si
dt
� A1u

0
i � A2

@u 0i
@t

�11�

where

A1 � r
rs � rCm

18n
d 2
�1� 0:15R�ed�0:687�1ÿ �c�ÿ2:7, A2 � r�1� Cm�

rs � rCm

�12�

The spectral transformation of Eq. (11) yields

Spp�o�� � A2
1 � A2

2o
�2

A2
1 � o�2

Sff�o�� �13�

where Spp(o
�) and S�(o

�) are the frequency spectra of the particle and ¯uid velocity
¯uctuation, respectively, and o� is the angular frequency of the ¯uctuation. In order to derive
the equations for u

02
si from Eq. (13), S�(o

�) must be known. Unfortunately, however, its general
form for multiphase turbulent ¯ow is not obtained. Therefore, in the present model, Eq. (13) is
simpli®ed as

u
02
si �

A2
1 � A2

2o
�2
0

A2
1 � o�20

u
02
i �14�

where o �0 is a representative frequency of the SGS turbulence and may be evaluated with the
computational grid size D,
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o�0 �
2p j ui j

D
�15�

In a similar fashion, the following expression is adopted for u
0
siu

0
i

u 0siu
0
i �

A2
1 � A2o�20
A2

1 � o�20
u
02
i �16�

2.3. Particle-cloud evolution and reallocation procedure in the GAL model

The changes in the centroid position of a particle cloud Dxsi and its variance Dx 02si during the
computational time interval Dt are obtained from the grid-averaged particle velocity and its
variance,

Dx si � usiDt �17�

Dx 02si � 2u
02
si TsDt �18�

where Ts denotes a Lagrangian integral time scale for the particle motion and is regarded as
the representative time for the di�usion process of the particle motion. Eq. (18) is derived by
assuming that the variance of particle motion in the GAL model is governed by the SGS
turbulence motion in the ¯uid phase, whose scale is smaller than that of the computational
grid size. The previous results by DNS (e.g. Squires and Eaton, 1991) suggest that the
Lagrangian velocity autocorrelations of the particle and surrounding ¯uid are di�erent due to
the e�ects of the particle inertia and cross-trajectory. To take account of these e�ects, Ts is
given as

Ts � SinerScrossTL �19�
In the above equation, TL represents a Lagrangian integral time scale for the ¯uid motion and
is expressed according to Elghobashi et al. (1984),

TL � 5k

12e
�20�

where k and e are, respectively, the kinetic energy and the dissipation rate of the SGS
turbulence in the ¯uid phase. Siner and Scross in Eq. (19) are introduced to incorporate
respectively the particle inertia and cross-trajectory e�ects into Ts and are given by Mols and
Oliemans (1998),

Siner � 1� tp=TL �21�

Scross � 1������������������������������������
1� �j uri j TL=D�2

q �22�

where tp represents the particle relaxation time. Eqs. (19)±(22) take account of only the
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¯uctuating forces between the two phases due to the SGS turbulence. For more general
estimation of Ts the e�ects of the inter-particle forces should also be included in the
formulation. This is however left for future studies.
The probability distribution of the particle position in a grid volume must be assumed for

the reallocation operation. In the preceding preliminary study (Nadaoka et al., 1995), the
uniform distribution as shown in Fig. 3 was adopted for the geometrical simplicity. The
reallocation procedure based on the uniform distribution is illustrated in Fig. 4. The particle
clouds located in the grid i, i+ 1 and i+ 2 at time t vary their centroid positions and sizes
due to advection and di�usion during Dt, and the evolved particle clouds may be situated over
a few grids in a mutually overlapping manner. Then at time t+Dt all fractions from these
particle clouds contributing to a grid are collected and reallocated to the grid with the uniform
distribution in the grid. With this operation, however, a numerical di�usion may inevitably
appear in the advection process. Fig. 5 exempli®es the numerical di�usion in a one-dimensional
advection process generated by the above described operation; i.e. the particle cloud located in

Fig. 3. Uniform probability distribution of the particle position in a grid volume (Nadaoka et al., 1995).

Fig. 4. Schematic illustation of the reallocation procedure based on the uniform distribution.
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the grid i at time t, due to the reallocation, results in the wider distributions around the
theoretical distribution at the subsequent time steps.
To reduce the numerical di�usion, in the present study, an alternative method of reallocation

has been employed. Instead of redistributing the collected fractions in a grid into a cloud with
the uniform distribution, the centroid of these fractions in the grid is retained and a
rectangular distribution around the centroid is given in the grid as the reallocation, as shown
in Fig. 6. The width of the particle cloud in the grid j, dx( j ), is represented with the relative
position of the centroid, xs( j ), and the grid center, xc( j ):

x s� j� < x c� j�

dx� j� � 2fx s� j� ÿ 0:5�xc� j� � xc� jÿ 1��g

x s� j� > x c� j�

dx� j� � 2f0:5�xc� j� 1� � xc� j�� ÿ x s� j�g �23�

Fig. 7 shows the result by the modi®ed reallocation procedure for the one-dimensional
advection process, indicating that the reallocated particle cloud is in quite good agreement with
the theoretical one.
With the rectangular distribution of a particle cloud in a grid volume, the expanded cloud

size in the xi-direction during Dt, dx '
i, may be estimated with the squared size of the particle

cloud at time t, dx 2
i , and the change in the variance of particle position, Dx 02si , as follows:

Fig. 5. Illustration of numerical di�usion in an advection process generated by the GAL model using the uniform
probability distribution in the particle cloud.
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Fig. 6. Rectangular cloud distribution around the centroid for the improved reallocation procedure; xs( j ): centroid;

xc( j ): grid center; (a) xs( j ) < xc( j ); (b) xs( j ) > xc( j ).

Fig. 7. Improved reallocation procedure for the one-dimensional advection process.
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dx
02
i � dx2

i � 12Dx 02si �24�

The probability that a fraction of the particle cloud located in the grid i at time t is situated in
the grid j after Dt, which is expressed as f(i, j ), must be evaluated for the reallocation. In Fig.
7, for example, f(i, i )=0.50 and f(i, i + 1)=0.50. Obviously for the conservation of the particle
cloud volume f(i, j ) must satisfy the condition,

Xi max

j�1
f�i,j� � 1 �25�

where imax is the total number of the computational grids. With f(i, j ) any quantities associated
with the particle cloud in the grid j at time t+Dt may be expressed by collecting the
contributions from all the grids. For example, the particle concentration and velocity are given
as

cn�1� j� �
Xi max

i�1
cn�i�f�i,j� �26�

un�1s � j� �
Xi max

i�1
uns �i�

cn�i�f�i,j�
cn�1� j� �27�

where n and n + 1 denote the computational time steps corresponding to t and t+Dt,
respectively. Likewise, the centroid of the particle cloud, xs( j ), is expressed as

xn�1
s � j� �

Xi max

i�1
x
0n
s �i,j�

cn�i�f�i,j�
cn�1� j� �28�

where x 'n
s (i, j ) is the centroid of a fraction of particle cloud in the grid j at the time step n + 1

which is located in the grid i at the time step n.
The fundamental performance of the GAL model with this reallocation procedure has been

examined by applying it to simple advection and di�usion processes for which exact analytical
solutions exist. The computational results by the GAL model for simple one-dimensional
advection and di�usion processes, as shown later in Section 3, indicate nearly perfect
agreements with the analytical solutions.

2.4. Equations of the ¯uid-phase motion

The ¯uid-phase motion is formulated in a manner similar to that for the usual LES except
for the inclusion of the particle concentration c and the interaction forces between the ¯uid
and particles. The SGS turbulence is evaluated with an equation of turbulence kinetic energy k
which includes the additional terms due to the forces between the two phases in GS and SGS
component, PG and PS, respectively.
The continuity, momentum and turbulence kinetic energy equations are given as
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@

@t
�1ÿ �c� � @

@xi
fui�1ÿ �c�g � @

@xi
fÿu 0i c 0g � 0 �29�

Dui
Dt
� ÿ1

r
@ �p

@xi
� @Rij

@xj
ÿ �c

1ÿ �c

�
18n
d 2
�1� 0:15R�ed �0:687�1ÿ �c�ÿ2:7uri � CLeijkurjok

� �1� Cm�Dui
Dt
ÿ Cm

dusi
dt

� �30�

Dk

Dt
� Rij

@ui
@xj
� @

@xi

�
nt
@k

@xi

�
ÿ Ce

k3=2

D
� PS � PG �31�

where

Rij�� ÿu 0i u 0j � � nt

�
@ui
@xj
� @uj
@xi

�
ÿ 2

3
kdij �32�

nt � CSk
1=2D �33�

D � �dx1 dx2 dx3�1=3 �34�

u 0i c 0 � ÿ
nt

sc

@

@xi
�1ÿ �c� �35�

PS � �c

1ÿ �c

�
18n
d 2
�1� 0:15Red�0:687�1ÿ �c�ÿ2:7�u 0siu 0i ÿ 2k� � 1

2
Cm

du 0siu
0
i

dt
ÿ �1� Cm�Dk

Dt

�
�36�

PG � a
�c

1ÿ �c

18n
d 2
�1� 0:15Red�0:687�1ÿ �c�ÿ2:7 j urj j2 �37�

In the above equations, nt denotes the SGS eddy viscosity and Rij represents the Reynolds
stress due to the SGS turbulence in the ¯uid-phase motion. The constant values usually
adopted for LES are given for Cs and Ce; i.e. Cs=0.12 and Ce=0.50.
The turbulence correlation between the ¯uid velocity and the particle concentration, u

0
i c
0, is

evaluated by Eq. (35), in which a gradient-type formulation of particle di�usion is adopted.
The turbulence Shumidt number of the particle concentration, sc, in Eq. (35) is taken simply
here as sc=1.0.
The coe�cient a in Eq. (37) to evaluate PG represents the fraction of the GS energy

produced by the drag force due to the relative velocity between the ¯uid and the particle to be
transformed to the SGS energy. Since Kanda and Hino (1994) suggest that this term is closely
related to the wake behind the obstacle, a may be strongly a�ected by the particle Reynolds
number Red. Hetsroni (1989) indicates that the vortex shedding phenomenon behind the
particle, which occurs in the range Red > 400, causes the enhancement of the ¯uid turbulence.
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To take account of the e�ect of the vortex shedding phenomenon on the ¯uid turbulence, in
the present study, the values of 0.1 and 1.0 are given to a in the range Red < 400 and
Red > 400, respectively.
Since the GAL model for the particle motion adopts the grid-volume averaging operation, it

is easily combined with the SGS model for the ¯uid turbulence. This is a crucial point to
constitute an e�ective LES model for multiphase turbulence ¯ows. The multiphase LES model
so obtained is named here the `GAL-LES model'.

3. Test of the GAL model for simple convection and di�usion problems

To check the fundamental performance of the GAL model with improved reallocation
procedure described in Section 2.3, calculations have been made for simple one-dimensional
convective transport and for di�usion. These computations were performed in the x domain of
10,000 m with the grid size Dx of 100 m. The performance of the GAL model with the
improved scheme has been examined by comparing with the exact analytical solutions.

3.1. Convection problem

The computation for the convective transport without di�usion, in which a Gaussian or a
step distribution of the particle concentration is initially imposed, has been conducted with the
constant velocity U of 0.5 msÿ1. The peak in the Gaussian distribution is initially located at
x= 0 with the value of c0, while the initial distribution of the particle concentration for a step
distribution is given as

c�0,x� � c0�xR0�, c�0,x� � 0�x > 0� �38�
Fig. 8(a) shows the computational results at the computational time steps of 100 for the
Gaussian distribution with the di�erent values of Dx/D, 0.106 and 0.425, where D is the half-
width of the Gaussian distribution of the initial particle concentration. The Courant number in
this case is 0.5. Although for Dx/D = 0.425 the normalized particle concentration shows the
peak value slightly smaller than unity, the computed c-pro®les give almost good agreements
with the theoretical values. Fig. 8(b) represents the computational results for the step
distribution at 50 time steps for the Courant number of 0.5 and 2.0. The computational results
give complete agreements with the theoretical values even for the case of the Courant number
greater than unity, indicating that the improved GAL model can exactly simulate the
convective translation of a sharp front. These results demonstrate that the improved GAL
model has the fundamental performance for convective problems. For further test of the GAL
model for a convective problem, one can refer to Nihei and Nadaoka (1998).

3.2. Di�usion problem

A calculation has been performed for a simple linear one-dimensional di�usion process
without advection in which a point source with a magnitude M is initially imposed, i.e.

K. Nadaoka et al. / International Journal of Multiphase Flow 25 (1999) 1619±16431632



c�x,0� �Md�x� �39�

The theoretical expression of the concentration c(x, t ) for this problem is

c�x,t� � M�����������
4pnct
p exp

�
ÿ x2

4nct

�
�40�

For the GAL model computation, as the initial condition corresponding to Eq. (39), the
uniform particle concentration c0 is given only within the central grid at t = 0, c0, being M/Dx.
The di�usion coe�cient nc in Eq. (40) is evaluated from Eq. (18) to be

nc � u
02
s Ts �41�

Fig. 8. Performance of the GAL model with the improved reallocation procedure for a one-dimensional convection
problem. (a) Gaussian distribution. (b) Step distribution.
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and in the present computation 100 cm2/s2 and 0.50 s are given for u
02
s and Ts, respectively. An

open boundary condition was applied to the both ends of the computational domain. For
examining the dependence of the computational result on the time step Dt, the computation
was executed with three di�erent time steps, 0.05, 0.10 and 0.50 s.
Fig. 9(a) shows the computed c-pro®les at several instants in case of Dt= 0.05 s and

compares them with the theory. The slight discrepancy found near x= 0 at t = 0.25 s is
attributable to the fact that at earlier stage of the computation the representative width of the
c-pro®le is comparable to the grid size Dx, in which the concentration is assumed to be
uniform in the GAL model. Except for this slight discrepancy, the computational result shows
quite good agreement with the theory. Fig. 9(b) represents the temporal change of the variance
of the c-pro®le computed with the three di�erent computational time steps. The very good
agreement of the computational result with the theory, which is indicated with a solid line, is
again found regardless of the computational time step. From these results one can con®rm the
fundamental validity of the GAL model for a di�usion problem.

Fig. 9. Performance of the GAL model with the improved reallocation procedure for a one-dimensional di�usion
problem. (a) Sequence of spatial distribution of concentration (Dt= 0.05 s). (b) Variance.
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4. Computation of a particle plume by the GAL-LES model and discussion

4.1. Computational conditions

The GAL-LES model has been applied to a particle plume which is driven by a constant
discharge of the solid particles at an inlet slot into the still water contained in a tank as
illustrated in Fig. 10. The computational conditions, as shown in Table 1, correspond to those
of the experiment conducted by Tamai and Muraoka (1996).
The computational domain has the dimensions of 60, 60 and 5 cm in the x-, y- and z-

directions, respectively, which are de®ned in Fig. 10. The number of the computational grid
points is 60, 40 and 10 in each direction. The velocity components in the x-, y- and z-directions
are denoted as u, v and w.
At the inlet boundary, the particle velocity is assumed to be its terminal falling velocity, w0,

and the particle concentration c is then

c � q=w0B �42�

Fig. 10. De®nition sketch of computational domain for a particle plume simulation.

Table 1
Computational conditions

Case 1 Case 2

Particle diameter d (cm) 0.30 0.10
Speci®c gravity rs/r 2.64 2.64
Terminal velocity w0 (cm/s) 31.1 15.4

Particle discharge q (cm2/s) 1.00 1.80
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where q denotes the particle discharge rate per unit spanwise length at the inlet slot and B the
transverse width of the slot (=1 cm). At the out¯ow boundary located in the lower boundary,
the convective boundary condition is employed:

@f
@t
�UCA� y�@f

@x
� 0 �43�

where f denotes a variable to be computed, like velocity, pressure and SGS turbulence kinetic
energy in the ¯uid phase. According to Dai et al. (1994), the convection velocity UCA( y ) at the
out¯ow boundary is de®ned as

UCA� y� � �C1Umex ÿUA� exp

(
ÿ
�

y

C2bex

�2
)
�UA �44�

where Umex and bex are, respectively, the mean velocity at y = 0 and the half width of the
mean velocity on the out¯ow boundary. Both the quantities are speci®ed by the experimental
results (Tamai and Muraoka, 1996); 20.0 and 30.0 are given to Umex in cases 1 and 2,
respectively, and 4.0 to bex in both cases. The constants C1 and C2 and UA are chosen to be
C1=0.8, C2=1.5 and UA=0.005 in accordance with Dai et al. (1994). At all the other
boundaries, the wall condition is applied. As the initial condition, the still water condition is
assumed.

4.2. Computational results and discussion

Fig. 11 shows the spatial distribution of the ¯uid-phase velocity vector nnn and the particle
concentration c in the x±y plane (z= 2.5 cm) in case of relatively larger particle, case 1. At the
beginning stage of the computation, t = 3.0 s, the ¯uid-phase is dragged simply downward by
the falling motion of the particles. The spatial distributions of the ¯uid-phase velocity and the
particle concentration are symmetrical along the center line. The ¯uid-velocity distribution at
t= 5.0 s is not symmetrical any more and there arise several large eddies in a staggered
alignment. These eddies can be regarded as the same kind observed in a usual free-turbulent
¯ow like a jet and plume. The corresponding ®eld of the solid-particle concentration exhibits a
characteristic spatial ¯uctuation pattern with close relation to the motion of the ¯uid phase.
These facts manifest the importance of the large-scale eddies in the turbulent transport process
of solid particles. At t= 6.0 s, the large-eddy motion in the ¯uid phase is developed further
and the spatial ¯uctuation of the particle concentration is more noticeable. Since the overall
characteristic of the ¯ow pattern after t = 6.0 s does not change appreciably, the calculated
results after t = 6.0 s are not shown here.
Fig. 12 shows the computational results in case of relatively smaller particle diameter, case 2,

at t = 7.0 s. The main features of the large-eddy formation and the spatial ¯uctuation of the
solid-particle concentration are similar to those for case 1. However, due to more distinct
development of the large eddies, there arises more marked asymmetrical distribution of the
particle concentration. This is attributed to the fact that the di�erence in the inertia force
depending on the particle diameter causes the di�erence in the response of the particle motion
to the ¯uid-phase motion.
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Fig. 13 represents the comparison between the computational and experimental results of the
lateral distributions of the time-averaged vertical velocities in each phase and particle
concentration. The vertical axis denotes the velocities in both phases and the particle
concentration normalized, respectively, by the ¯uid velocity and the particle concentration both

Fig. 11. Spatial distributions of nnn and c in case 1. (a) Fluid velocity vector nnn. (b) Particle concentration c.
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at the center line, uc and cc. The horizontal axis indicates the distance y from the center line
normalized with the half-value width of the ¯uid-phase velocity, yh. Since no appreciable
di�erence in the computational results of these normalized values can be found at each cross-
section, only the results at x/B= 25 are shown here. These ®gures indicate that the
computational results give acceptable agreements with the measured values except for the mean
particle velocities in case 2. This discrepancy is considered to be due to the formulation of the
drag forces between the ¯uid and particle phases: that is, the general formulation of the drag
force has not been obtained for turbulent ¯ow ®elds with high particle concentration like case
2 and thus the low accuracy of the drag formulation causes the discrepancy between the
experimental and computational particle velocities in case 2. Therefore, for further
improvement of the present model, a more accurate evaluation of the drag force relevant to
various ¯ow conditions is required.

The downward ¯uid velocity at the center line, uc, and the half-value width of the ¯uid
velocity, yh, along the center line are represented in Fig. 14. This ®gure indicates that the
calculated values of uc and yh are well reproduced in both cases.

Fig. 15 depicts the lateral distributions of the time-averaged Reynolds stress in the ¯uid
phase at x/B= 25. Since the ¯uid-phase turbulence, in the present model, is separated into the
GS and SGS components, each component of the Reynolds stress is also indicated. The SGS
component is evaluated from Eq. (32), that is, multiplying the spatial gradient of the ¯uid
velocity by the turbulent eddy viscosity. These ®gures show that the computational results give
excellent predictions of the Reynolds stress in the ¯uid phase.

Concerning the relative contribution of the SGS and GS components to the total Reynolds
stress, in case 1 the SGS component is more dominant than the GS component, while in case 2
the GS component is more noticeable. These facts agree with the experimental ®ndings by
Tamai and Muraoka (1996) that in a particle plume with relatively larger particle diameter like

Fig. 12. Spatial distributions of nnn and c in case 2. (a) Fluid velocity vector nnn. (b) Particle concentration c.
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case 1 small-scale turbulence corresponding to the SGS component in the ¯uid phase is
dominant, while in case of smaller particle diameter such as case 2 large-eddy motion becomes
noticeable. The dependence of the relative signi®cance of the SGS and GS Reynolds stresses on
the particle diameter may be explained by the fact that the large-eddy structure in the ¯uid
phase is a�ected by the di�erence in the inertia force of the particle motion as described above,
and that the production of the SGS turbulence energy is a�ected also by the relative velocity
between both phases.

From the above results, it is concluded that the computational results for the particle plume
are in good agreement with the measured, demonstrating the validity of the GAL-LES model.

Fig. 13. Transverse distributions of time-averaged particle and ¯uid velocities and particle concentration. (a) Case 1.
(b) Case 2.
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5. Conclusions

A new model for dispersed particle motion in multiphase turbulent ¯ow is presented to
provide an LES model for multiphase turbulent ¯ow in which a large number of particles are
involved. The model for dispersive particle motion, which is referred to here as GAL (grid-
averaged Lagrangian) model, is based on an averaging operation for a Lagrangian-type
equation of motion of a particle over a computational grid volume and a procedure of

Fig. 14. Time-averaged ¯uid velocity uc and half-value width yh along the centerline. (a) Fluid velocity at the center

line, uc. (b) Half-value width of the ¯uid velocity, yh.
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reallocation of a dispersed particle cloud with its centroid movement to each grid. The model is

therefore a mixed Eulerian±Lagrangian model which can e�ectively reduce computational time

compared with existing Lagrangian-type models, without losing the advantage of Lagrangian

models that they can properly describe the dynamical evolution of particles. Since the GAL

model adopts the grid-volume averaging operation it can easily provide an e�ective SGS model

for LES modeling of multiphase turbulent ¯ow. The validity of the multiphase LES model so

obtained, which is called here the GAL-LES model, has been con®rmed by applying it to a

Fig. 15. Transverse distribution of the Reynolds stress in the ¯uid phase. (a) Case 1. (b) Case 2.
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particle plume computation and comparing with the laboratory data obtained by Tamai and
Muraoka (1996). The computation has succeeded in reproducing the large-eddy motion of the
¯uid phase and the associated spatial ¯uctuation of the particle concentration. The time-
averaged velocities of the ¯uid and particle phase, the particle concentration and the Reynolds
stress in the ¯uid phase give good agreement with the experimental data, demonstrating the
validity of the GAL-LES model. The relative contribution of the SGS and GS components to
the total Reynolds stress was found to have appreciable dependence on the particle diameter.
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